Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2774: 43-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441757

RESUMO

Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.


Assuntos
Transdução de Sinais , Biologia Sintética , Animais , Membranas , Biofísica , Dimerização , Mamíferos
2.
Small ; 19(13): e2202104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35618485

RESUMO

Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane-membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane-membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane-membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.


Assuntos
Bicamadas Lipídicas , Lipossomos , Animais , Membrana Celular , Membranas , Processamento de Proteína Pós-Traducional , Corantes , Mamíferos
3.
Nat Commun ; 13(1): 6312, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274095

RESUMO

Polymerase Chain Reaction (PCR) is an essential method in molecular diagnostics and life sciences. PCR requires thermal cycling for heating the DNA for strand separation and cooling it for replication. The process uses a specialized hardware and exposes biomolecules to temperatures above 95 °C. Here, we engineer a PcrA M6 helicase with enhanced speed and processivity to replace the heating step by enzymatic DNA unwinding while retaining desired PCR characteristics. We name this isothermal amplification method SHARP (SSB-Helicase Assisted Rapid PCR) because it uses the engineered helicase and single-stranded DNA binding protein (SSB) in addition to standard PCR reagents. SHARP can generate amplicons with lengths of up to 6000 base pairs. SHARP can produce functional DNA, a plasmid that imparts cells with antibiotic resistance, and can amplify specific fragments from genomic DNA of human cells. We further use SHARP to assess the outcome of CRISPR-Cas9 editing at endogenous genomic sites.


Assuntos
DNA Helicases , Técnicas de Amplificação de Ácido Nucleico , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/metabolismo , Reação em Cadeia da Polimerase
4.
Chem Rev ; 120(1): 36-78, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31661246

RESUMO

Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.


Assuntos
DNA/química , Proteínas Motores Moleculares/química , Imagem Individual de Molécula/métodos , Bioengenharia/métodos , DNA Helicases/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Força Atômica , Nanotecnologia , Conformação de Ácido Nucleico , Pinças Ópticas
5.
Proc Natl Acad Sci U S A ; 116(3): 1017-1026, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598442

RESUMO

Superresolution, single-particle tracking reveals effects of the cationic antimicrobial peptide LL-37 on the Escherichia coli cytoplasm. Seconds after LL-37 penetrates the cytoplasmic membrane, the chromosomal DNA becomes rigidified on a length scale of ∼30 nm, evidenced by the loss of jiggling motion of specific DNA markers. The diffusive motion of a subset of ribosomes is also frozen. The mean diffusion coefficients of the DNA-binding protein HU and the nonendogenous protein Kaede decrease twofold. Roughly 108 LL-37 copies flood the cell (mean concentration ∼90 mM). Much of the LL-37 remains bound within the cell after extensive rinsing with fresh growth medium. Growth never recovers. The results suggest that the high concentration of adsorbed polycationic peptides forms a dense network of noncovalent, electrostatic linkages within the chromosomal DNA and among 70S-polysomes. The bacterial cytoplasm comprises a concentrated collection of biopolymers that are predominantly polyanionic (e.g., DNA, ribosomes, RNA, and most globular proteins). In normal cells, this provides a kind of electrostatic lubrication, enabling facile diffusion despite high biopolymer volume fraction. However, this same polyanionic nature renders the cytoplasm susceptible to massive adsorption of polycationic agents once penetration of the membranes occurs. If this phenomenon proves widespread across cationic agents and bacterial species, it will help explain why resistance to antimicrobial peptides develops only slowly. The results suggest two design criteria for polycationic peptides that efficiently kill gram-negative bacteria: facile penetration of the outer membrane and the ability to alter the cytoplasm by electrostatically linking double-stranded DNA and 70S-polysomes.


Assuntos
Peptídeos Catiônicos Antimicrobianos , DNA Bacteriano/metabolismo , Escherichia coli/crescimento & desenvolvimento , Polirribossomos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Microscopia de Fluorescência , Catelicidinas
6.
BMC Bioinformatics ; 19(1): 428, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445904

RESUMO

The revolution in fluorescence microscopy enables sub-diffraction-limit ("superresolution") localization of hundreds or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence from the entire three-dimensional (3D) cell body is projected along the z-axis of the microscope to form a 2D image at the camera plane. For imaging of two different species, here denoted "red" and "green", a significant biological question is the extent to which the red and green spatial distributions are positively correlated, anti-correlated, or uncorrelated. A commonly used statistic for assessing the degree of linear correlation between two image matrices R and G is the Pearson Correlation Coefficient (PCC). PCC should vary from - 1 (perfect anti-correlation) to 0 (no linear correlation) to + 1 (perfect positive correlation). However, in the special case of spherocylindrical bacterial cells such as E. coli or B. subtilis, we show that the PCC fails both qualitatively and quantitatively. PCC returns the same + 1 value for 2D projections of distributions that are either perfectly correlated in 3D or completely uncorrelated in 3D. The PCC also systematically underestimates the degree of anti-correlation between the projections of two perfectly anti-correlated 3D distributions. The problem is that the projection of a random spatial distribution within the 3D spherocylinder is non-random in 2D, whereas PCC compares every matrix element of R or G with the constant mean value [Formula: see text] or [Formula: see text]. We propose a modified Pearson Correlation Coefficient (MPCC) that corrects this problem for spherocylindrical cell geometry by using the proper reference matrix for comparison with R and G. Correct behavior of MPCC is confirmed for a variety of numerical simulations and on experimental distributions of HU and RNA polymerase in live E. coli cells. The MPCC concept should be generalizable to other cell shapes.


Assuntos
Células/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Células/citologia , Cor , Correlação de Dados , Humanos
7.
Mol Microbiol ; 110(2): 262-282, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107639

RESUMO

The organization of the chromosomal DNA and ribosomes in living Escherichia coli is compared under two growth conditions: 'fast' (50 min doubling time) and 'slow' (147 min doubling time). Superresolution fluorescence microscopy reveals strong DNA-ribosome segregation in both cases. In both fast and slow growth, free ribosomal subunits evidently must circulate between the nucleoid (where they initiate co-transcriptional translation) and ribosome-rich regions (where most translation occurs). Single-molecule diffusive behavior dissects the ribosome copies into translating 70S polysomes and free 30S subunits, providing separate spatial distributions for each. In slow growth, ~21,000 total 30S copies/cell comprise ~65% translating 70S ribosomes and ~35% free 30S subunits. The ratio of 70S ribosomes to free 30S subunits is ~2.5 outside the nucleoid and ~0.50 inside the nucleoid. This new level of quantitative detail may motivate development of comprehensive, three-dimensional reaction-diffusion models of ribosome, DNA, mRNA and RNAP spatial distributions and dynamics within the E. coli cytoplasm.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/fisiologia , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas/metabolismo , Imagem Individual de Molécula , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Polirribossomos/química , Polirribossomos/genética , Polirribossomos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética
8.
mBio ; 8(3)2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588135

RESUMO

In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P-mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation.IMPORTANCE Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Cinética , Mutação , Imagem Óptica/métodos , Fatores de Alongamento de Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...